
ACCESS Tim Millea, slide 1

ACCESS
Autonomic Computing -

Creating self-Evolving Software
Systems

Tim Millea
Applied Software Engineering Research Group

University of Reading
tim@millea.com

ACCESS Tim Millea, slide 2

ACCESS

1. introduction

2.perspective - what am I talking about?

3.evolutionary systems

4.evolution

5.autonomic computing

6. ACCESS

ACCESS Tim Millea, slide 3

background

• Durham BSc Computer Science (1992-96)

• software engineering / AI

• Oxford University MSc in Computation (1996-7)

• project: intelligent agents for the web

• parallel close-coupled evolutionary algorithm

• Loughborough PhD ‘Immortal Software’ (1997-2001)

• Evolutionary Financial IT project with Schroders Bank

• Reading University

• Research Fellow on DESEL (2001- 02)

• Lecturer in Computer Science (2002 - 04)

• First Grant Proposal - ACCESS

• Next - Antalya, Turkey

• Property developer, property management, sales

ACCESS Tim Millea, slide 4

ACCESS - facts

•Autonomic Computing - Creating self-Evolving

Software Systems

• £113 000 grant (TL 300 billion)

•£4k equipment, £9k travel, £100k for 2 studentships

•First started October 2003, ends April 2007

•Project personnel:

•Principal Investigator: Mike Evans

•Co-Investigator: Rachel Harrison

•Specification, DSLs: Diana Griffiths

•Software markets: Tim Putnam

ACCESS Tim Millea, slide 5

perspective

business environment

Big Bank plc

business system

IT system

software system

ACCESS Tim Millea, slide 6

IT System = software + people

IT staff as shock absorbers in an IT system -

between the pressures for change and inflexible software

IT system

pressures for change

IT staff

software components

ACCESS Tim Millea, slide 7

poor feedback

• poor customer-developer feedback loop

• customers and developers live in different worlds

requirements

specification

design

implementation

testing

requirements

implementation

testing

Change
of business
requirements

ACCESS Tim Millea, slide 8

Requirements

satisfaction

the requirements gap

• large grained changes

• ‘gap’ filled by IT staff

• s/w never near ideal

• no one happy

• frequent small steps

• always near ideal

• same change characteristic

• requires:

• change liquidity

• change-directing mechanism

Environmental

change

ideal with respect to environment

v1.1

v1.2

new

system

v2.0

ideal with respect to environment

ACCESS Tim Millea, slide 9

• structure vs flexibility

• align the structure with the dynamics of the domain

building-in flexibility / predicting the future

Requirements

now

time

gap

historical

inference

• historical inference

• use domain knowledge

• build upon static foundations

ACCESS Tim Millea, slide 10

• hypothesis: every domain has its own set of atomic constants

• e.g. in the financial domain: transaction, debt, equity, sale etc.

• by identifying atomic constants, we infer that everything else in

the model may change

• customer constructs system not from programming primitives,

but from domain primitives

• graduation from atomic constants to dynamic applications,

aligns software & application domain dynamics

aligning the dynamics

ACCESS Tim Millea, slide 11

shortening the feedback loop

• raise level of system construction towards customer by

automating development stages

Life cycle stage Paradigm Example

requirements evolutionary evolutionary algorithm

specification semantic executable model

design component component library

implementation program C, Pascal

• end user/customer becomes agent of change

• longer term ideal would be automatic evolution from requirements

ACCESS Tim Millea, slide 12

layered model of evolutionary systems

process

enterprise

domain

domain machine

implementation

executive

business

model

model view

application domain

implementation

fixed point

application domain

dynamics

implementation dynamics

ACCESS Tim Millea, slide 13

alternatively - software market failures

• software evolution problems due to inefficient allocation of resources

• lack of regulation has led to:

• ‘software pushers’ getting users hooked

• forced upgrades

• tied products

• regulation should provide

• open standards

• compatible OS and application frameworks

• better competition

• licenses meaningful to the user (eg. service standard & duration)

• protection against upgrade coercion

ACCESS Tim Millea, slide 14

evolvability - the 3 Fs

Flexibility

• ability to change

• dimensions of change

• ‘solution space’

Feedback

• directing change

• environmental interaction

Formality

• the ‘rule book’

• maintaining correctness

• meta-structure

• limiting scope

ACCESS Tim Millea, slide 15

defn. evolution :

a process of feedback-driven (beneficial) change

E(s) ! st = f(st-1, et-1)

defining evolution

ACCESS Tim Millea, slide 16

• no. of computers growing approx 40% p.a
• average complexity increasing
• managing it is currently a human activity
• labour demand outstrips supply
• forecast 200M skilled personnel required within 10

years

UK e-Science autonomic computing research agenda
• self-organising adaptive systems
• managed through specified policies and agreements

between system stakeholders
• interoperability across domains

why self-Evolving Software Systems?

ACCESS Tim Millea, slide 17

Autonomic Computing

autonomic - self-regulating functioning of
central nervous system, e.g. heart beat rate,
pupil dilation, perspiration, adjusted
according to changing conditions and without
conscious thought. By analogy,

autonomic computing systems:
• self-regulate
• self-maintain
• respond to changing requirements
• provide optimal service
• without end-user intervention.

ACCESS Tim Millea, slide 18

1. ‘self-aware’

2. self (re)configuring

3. self-optimising

4. self-repairing

5. self-protecting

6. self-adapting

7. operate in heterogeneous world

8. hide internal complexity

IBM’s 8 elements of autonomic computing

ACCESS Tim Millea, slide 19

Autonomic Computing - Creating self-Evolving Software Systems

other autonomic
systems, users

autonomic system

end users

managers

purchasers

regulators

legislature

IT support

stakeholders

DSL

documents

s/w maintenance
model

objective document

resolver

optimiser

service
components

communicator

protectorledger

monitor

operational concerns

software market

primary market
(developers

selling)

secondary market
(autonomic

trading)

futures market
(trade in risk)

s/w components

service
provision

ACCESS Tim Millea, slide 20

deliverables

• Family of DSLs

• Domain calculus

• Tool to support the rapid generation of DSLs from domain calculus
expressions.

• Theory of resolution and its application to deal with inconsistencies,
uncertainties and compromise in expressed concerns.

• A model and implementation of a resource-efficient software market
extending the service-oriented approach to machine trading.

• Evolutionary algorithm to optimise with respect to a set of resolved
system concerns and the software market.

• Published output proving that we have created self-evolving software

ACCESS Tim Millea, slide 21

The Babel Fish

• Feeds on brainwave energy
• Excretes a telepathic matrix
• Combines thought & speech nerve signals

• Practically:
• Stick one in your ear to understand any form of language

• “Nothing so mindbogglingly useful could have evolved purely by
chance”

[From Hitch-Hikers Guide to the Galaxy”, Douglas Adams, 1979]

“The oddest thing in the Universe”

ACCESS Tim Millea, slide 22

summary

• background

• Durham to Reading, evolutionary algorithms to autonomic computing

• perspective

• software, people, feedback, inflexibility, requirements gap

• evolutionary systems

• layered & ‘egg timer’ models

• evolution

• the ‘3 Fs’, definition and equation - E(s) ! st = f(st - 1, et - 1)

• autonomic computing

• meaning, research agenda

• ACCESS

• TL 300 billion 3 year project started Oct 2003

• funding for two PhD students and blue-sky conferences

ACCESS Tim Millea, slide 23

